Piecewise Testable Languages and Nondeterministic Automata
نویسنده
چکیده
A regular language is k-piecewise testable if it is a finite boolean combination of languages of the form Σa1Σ · · ·ΣanΣ, where ai ∈ Σ and 0 ≤ n ≤ k. Given a DFA A and k ≥ 0, it is an NLcomplete problem to decide whether the language L(A) is piecewise testable and, for k ≥ 4, it is coNP-complete to decide whether the language L(A) is k-piecewise testable. It is known that the depth of the minimal DFA serves as an upper bound on k. Namely, if L(A) is piecewise testable, then it is k-piecewise testable for k equal to the depth of A. In this paper, we show that some form of nondeterminism does not violate this upper bound result. Specifically, we define a class of NFAs, called ptNFAs, that recognize piecewise testable languages and show that the depth of a ptNFA provides an (up to exponentially better) upper bound on k than the minimal DFA. We provide an application of our result, discuss the relationship between k-piecewise testability and the depth of NFAs, and study the complexity of k-piecewise testability for ptNFAs. 1998 ACM Subject Classification F.1.1 Models of Computation, F.4.3 Formal Languages
منابع مشابه
Alternating Towers and Piecewise Testable Separators
Two languages are separable by a piecewise testable language if and only if there exists no infinite tower between them. An infinite tower is an infinite sequence of strings alternating between the two languages such that every string is a subsequence (scattered substring) of all the strings that follow. For regular languages represented by nondeterministic finite automata, the existence of an ...
متن کاملEfficient Separability of Regular Languages by Subsequences and Suffixes
When can two regular word languages K and L be separated by a simple language? We investigate this question and consider separation by piecewiseand suffix-testable languages and variants thereof. We give characterizations of when two languages can be separated and present an overview of when these problems can be decided in polynomial time if K and L are given by nondeterministic automata.
متن کاملOn Biautomata
We initiate the theory and applications of biautomata. A biautomaton can read a word alternately from the left and from the right. We assign to each regular language L its canonical biautomaton. This structure plays, among all biautomata recognizing the language L, the same role as the minimal deterministic automaton has among all deterministic automata recognizing the language L. We expect tha...
متن کاملAlternative Automata Characterization of Piecewise Testable Languages
We present a transparent condition on a minimal automaton which is equivalent to piecewise testability of the corresponding regular language. The condition simplifies the original Simon’s condition on the minimal automaton in a different way than conditions of Stern and Trahtman. Secondly, we prove that every piecewise testable language L is k-piecewise testable for k equal to the depth of the ...
متن کاملOn Languages Piecewise Testable in the Strict Sense
In this paper we explore the class of Strictly Piecewise languages, originally introduced to characterize long-distance phonotactic patterns by Heinz [7] as the Precedence Languages. We provide a series of equivalent abstract characterizations, discuss their basic properties, locate them relative to other well-known subregular classes and provide algorithms for translating between the grammars ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016